Math formula sheet : Angles and Shapes

Angles

Vertically opposite

Interior alternate angles,

Equal

angles,

Add to 180

Allied

angles,

angles,

Equal

Triangles

Equal

à

a+b+c =180

Equilateral triangle Isosceles triangle

 $a^{2}+b^{2}=c^{2}$, right angled triangle

Polygons

- Exterior angles (1,2,3,4,5,6) add to 360
- Sum of interior angles : $(n-2) \times 180$, where n is the number of sides

exterior angle (2) + interior angle (1) = 180

A regular polygon has all sides equal, and all angles equal

1.Square
4 lines of symmetry
Rotational symmetry of order 4
Area = side²
Perimeter= 4 x side

2. Rectangle
2 lines of symmetry
Rotational symmetry of order 2
Area = length x width
Perimeter = 2(length + width)

3.Parallelogram No lines of symmetry Rotational symmetry of order 2

Area = AB x h (base x height) = AB x c sin θ (as c sin θ = h)

4.Rhombus
2 lines of symmetry
Rotational symmetry of order 2
Diagonals bisect angles, so ∠DAC = ∠BAC

5. Trapezium Area = $\frac{1}{2}$ h (a + b) a and b are parallel sides

6.Kite

1 line of symmetry, no rotational symmetry Area = $\frac{1}{2}$ DB x AC ($\frac{1}{2}$ x product of diagonals) Diagonals form right angles where they intersect