Math formula sheet : Angles and Shapes

Angles

Interior alternate angles,

Vertically opposite angles,

Allied
angles,

Add to 180
Equal

Triangles

$a+b+c=180$

Equilateral triangle Isosceles triangle

Corresponding angles,

$a^{2}+b^{2}=c^{2}$, right angled triangle

Polygons

- Exterior angles ($1,2,3,4,5,6$) add to 360
- Sum of interior angles: $(\mathrm{n}-2) \times 180$, where n is the number of sides

A regular polygon has all sides equal, and all angles equal

Quadrilaterals

1.Square

4 lines of symmetry
Rotational symmetry of order 4
Area $=$ side 2
Perimeter $=4 \times$ side

3.Parallelogram

No lines of symmetry
Rotational symmetry of order 2

2. Rectangle

2 lines of symmetry
Rotational symmetry of order 2
Area $=$ length \times width
Perimeter $=2($ length + width $)$

$$
\begin{aligned}
& \text { Area }=A B \times h(\text { base } \times \text { height }) \\
& =A B \times c \sin \theta(\text { as } c \sin \theta=h)
\end{aligned}
$$

4.Rhombus

2 lines of symmetry
Rotational symmetry of order 2
Diagonals bisect angles, so $\angle \mathrm{DAC}=\angle \mathrm{BAC}$

5. Trapezium

Area $=1 / 2 h(a+b)$
a and b are parallel sides

6. Kite

1 line of symmetry, no rotational symmetry
Area $=1 / 2 D B \times A C(1 / 2 \times$ product of diagonals $)$
Diagonals form right angles where they intersect

